The Levett School

Positivity | Determination | Reflection | Integrity

Math's Calculations Policy

Policy agreed by Governors on:	$3^{\text {rd }}$ May 2022
Review date for Governors:	$3^{\text {rd }}$ May 2022
Allocated Group/Person to Review:	Hannah Buchanan
Agreed frequency of Review, by allocated person:	Every Year
Last Review date:	07.03 .2022

Lower School, Melton Road, Sprotbrough, Doncaster, DN5 7SB
Upper School, Lansdowne Road, Intake, Doncaster, DN2 6QN

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the samelearning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondaryschool.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes. While not a school policy, it is recommended to avoid ability groups. This presents a challenge in ensuring the more confident mathematicians arebeing extended. An extension tasks to deepen understanding is the most simplistic way around this.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to beused with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas. Drury, H. (2015)

Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. Jean Piaget's (1951)

Real things and structured images enables children to understand the abstract. The concrete and the images are a means for children to understand the symbolic so it's important to move between all modes to allow children to make connections. Morgan, D. (2016)

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

ADDITION

Vocabulary: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as'

Stage 0 - pre-ARE (EYFS)			
Method	Concrete	Pictorial	Abstract
Counting	Any item of the same things, e.g. pencils, pieces of pasta, shells, counters, cubes, cars, buttons,	Pictures of the same items in different numbers and laid out differently.	Relate the number of objects to the numeral.
Stage 1 - Year 1			
Method	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part whole model	For $4+3$, count out 4 items then 3 more and group them together to see what you have altogether. Represent in a bar / in a group Other resources can be used instead of cubes (teddy's, cars, shells, counters, etc).	Use pictures to add two numbers together as a group or in a bar.	Use the part - part - whole diagram as shown above to move into the abstract. $\begin{aligned} & 8=5+3 \\ & 5+3=8 \end{aligned}$ Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$

Starting at the bigger number and count on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. Using number lines using cubes/ Numicon	$12+5=17$ Start at the larger number from the sum on the number line and count on in 1s or jump to find the answer.	$5+12=17$ Place the number line in your head and count on the smaller number to find your answer. Variation of questions. With the number line in your head: - What is 2 more than 4? - What is the sum of 4 and 4 ? - What's the total of 4 and 2 ? - $4+2$
'The Magic 10' Regrouping to make 10 Makes the calculation easier. Essential for column addition later.	Regrouping $9+3$ into $10+2$ before adding together Start with the bigger number and use the smaller number to make 10 using ten frames or numicon: $6+5=11$	Children to draw the ten frame and counters/cubes. Use pictures or a number line. Regroup to partition the smaller number using the part - part- whole model to make 10. $9+5=14$	$\begin{aligned} & 7+5=? \\ & 7+3+2=? \end{aligned}$ If I have 7 how many of my 5 do I need to make 10 ? How many more do I still need to add on? Children to develop an understanding of equality $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Stage 2 －Year 2										
Method	Concrete	Pictorial	Abstract							
Adding multiples of 10	$50=30+20$ Model using dienes and beadstrings．	Use representations of base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$ Ensure all variations of sums layout is done．							
Use known number facts Part，part whole	Children explore ways of making numbers within 20.	$\begin{gathered} \square+\square=20 \\ \square+\square=\square \\ \square+\square=20 \end{gathered} \quad 20-\square=\square$	Explore commutativity of addition by swapping the addends to build a fact family． Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations． \square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 － \square $=1$							
Using known facts		$\begin{aligned} \because+\because & =\therefore \\ \\|\\|+\\|\\| & =\\| \\| \\| \\ \square+\text { 昌 } & =\text { 昭暗 } \end{aligned}$ Children draw representations of H, T and O ．	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$							
Bar Model	$3+4=7$	$7+3=10$	23 25 $?$							

Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $17+5=22$ $27+5=32$	$17+5=22$ Use part part whole and number line to model.	$17+5=22$ Explore related facts$17+5=22$$5+17=22$$22-17=5$22 17 5$22-5=17$ Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add a two digit number and tens	$\begin{aligned} & 25+10=35 \\ & \text { Explore that the ones digit does not change } \\ & \hline \end{aligned}$		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2 digit numbers	ARAB Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{aligned} & 20+40=60 \\ & 5+7=12 \\ & 60+12=72 \end{aligned}$ Lead into recording in column format, to reinforce place value and prepare childrenfor formal written methods with larger values.

Add three 1 digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation. $+{ }^{\infty}=15$	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/bridge ten then add on the third.

	(10) 0 (10)(10)(10) (1) (10) (10) 10$46+27=73$		
Estimate the answers to questions and use inverse operations to check answers	Estimating $98+17=$? $100+20=120$	Use number lines to illustrate estimation.	Building up known facts and using them to illustrate the inverse and to check answers. $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$
Stage 4 - Year 4-6			
Method	Concrete	Pictorial	Abstract
Years 4-6 Estimate and use inverse operations to check answers to a calculation		As per Year 3	

	Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total? $21+34=55 \text {. Prove it }$	$\begin{aligned} & 21 \\ & +34 \\ & - \\ & \hline 21+34= \\ & -\quad=21+34 \end{aligned}$ Calculate the sum of twenty-one and thirty-four.	Missing digit problems:	
			10s	Is
21 34			(1) 3	(1)
			(1) $\bigcirc \bigcirc$?
			?	5

SUBTRACTION			
Vocabulary: take away, less than, the difference, subtract, minus, fewer, decrease			
Stage 1 - Year 1			
Method	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etcto show how objects can be taken away. $4-2=2$	Cross out drawn objects to show what hasbeen taken away. $15-3=12$	$\begin{gathered} 7-4=3 \\ 16-9=7 \end{gathered}$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you countbackwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. Whatnumber are you at?
Find the Difference	Compare objects and amounts	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5. How many more does Hannah have than hersister.?

	Lay objects to represent bar model.		
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part Part Whole model	Link to addition. Use PPW model to modelthe inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within thepart whole model. Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$
Make 10 using a ten frame	Make 14 on the ten frame. Take 4 away to make ten, then take one more away sothat you have taken 5.	Jump back 3 first, then another 4 . Use tenas the stopping point.	$16-8$ How many do we take off first to get to 10 ?How many left to take off?
Bar model Including the inverse operations.			8 2 $10=8+2$ 10 $=2+8$ $10-2=8$

			$10-8=2$
Stage 2 - Year 2			
Method	Concrete	Pictorial	Abstract
Regroup a ten intoten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take andmake'		$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes andcross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossingmore than one ten,		 'counting on' to find 'difference' Use a number line to count on to next tenand	$93-76=17$

crossing the hundreds.	Use a bead bar or bead strings to modelcounting to next ten and the rest.	then the rest.	
Stage $3-$ Year 3			
Method	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: three digit number + ones three digit number + tens three digit number + hundreds	-		Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$
Column subtraction without regrouping (friendly numbers)	$47-32$ Use base 10 or Numicon to model	 Draw representations to supportunderstanding	$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step maybe needed to lead to clear subtraction understanding.

MULTIPLICATION

Vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal groups

Stage 1 - Year 1

Method	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each partbefore recombining it back together.
Counting in multiples ($2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$)	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples ofnumbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Making equal
groups and counting
the total

Abstract

\section*{Stage 2 - Year 2}

Children should be able to recall and sue multiplication and division facts for the 2,5 and 10 times tables.

Method	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes andPV counters.	Draw pictures and representations toshow how to double numbers	Partition a number and then double eachpart before recombining it back together.
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children areskip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples ofnumbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

		3 3 3 3	
		?	
Multiplication is commutative	Create arrays usingcounters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. 0000 0000	$12=3 \times 412=4 \times$ 3 $\begin{aligned} & \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ & \\ & \\ & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \end{aligned}$

Stage 3 - Year 3

Children should be able to recall and sue multiplication and division facts for the 2,5 and 10 times tables.

Division as sharing

Method	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{aligned} & \mathrm{Eg} \\ & \begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array} \end{aligned}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \end{aligned}$ $28 \div 7=4$ $28 \div 4=7$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

| |
| :--- | :--- | :--- |
| Method |
| Digide at least 3 |
| digit. |
| Short Division |

Long Division

Step 1-a remainder in the ones

h t o
 041 R1
 $4 \longdiv { 1 6 5 }$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th hto
$8 \longdiv { 0 4 0 0 R 7 }$
8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times ($3,200 \div 8=400$)
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Step 1 continued.....

$$
\begin{array}{r}
\mathrm{h} t \quad 0 \\
061 \\
\hline 4 \longdiv { 2 4 7 } \\
\frac{-4}{3}
\end{array}
$$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$-\frac{4}{18}$	$\frac{-4}{18}$	$\frac{-4}{18}$
	－18	－18
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

Step 3 - a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & \frac { h t o } { 1 _ { 2 } } 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \quad h+0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h 10 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} h 10 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ -07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} n+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -6 \\ \hline \begin{array}{r} 18 \\ -18 \end{array} \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the	$\begin{gathered} n+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -6 \\ \hline \begin{array}{r} 18 \\ -18 \end{array} \end{gathered}$ There are no more digits to drop down. The quotient is 139.

